Unuversity of
Massachusetts

Ambherst

ECEG97AA — Lecture 16

Queuing Systems |

Tilman Wolf
Department of Electrical and Computer Engineering
10/31/08

Statistical Multiplexing

= Circuit switching
* Dedicated end-to-end connection
* Resources are reserved along path
* Guaranteed constant data rate
e Achieved trough multiplexing Tom o o
(TDM, FDM) e
= Packet switching -7
* Packets are unit of transmission

| 10 Mbps Ethernet r
+ “Best effort” and no guarantees -y statistical
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e Statistical multiplexing : gﬂu:;;:rwng
inCUI’S queuing delays == for output link

= Can we quantify

queuing delay?
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End-to-end connection
between Hosts A and B, using
ane “circuit” |

in each of the link




Simple Queuing Example

* Queuing systems are everywhere
e Line in bookstore (or Blue Wall)
* Traffic light
* Your homework assignments

£

= Key features
* “Server” has finite capacity (needs time to process)
» In network terminology, the server is the link
* Demand for service (“job” arrival) is unpredictable
» The jobs are the packets
= Questions
* How long does a job need to wait before being serviced?
* How many jobs are in the queue?
* How high is the utilization of the server?
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Notation in Queuing Systems

* Notation introduced by Kleinrock
* C, is n'" customer entering system
» 1, is arrival time for C_
» t, is interarrival time (t,=t,—t,_,)
» X, is service time for C_
» W, is waiting time for C,
» s, is system time (waiting plus queuing) for Cy (s,=w,+X,)
* N(t) is number of customers in system at time t
* U(t) is amount of unfinished work in system at time t
* ) is average arrival rate
» E[t,]=1/A
* u is average service rate
» E[x,]=1/p
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Basic Queuing Behavior

= a(t) is number of
arrivals in (0,t) nf : A
= 3(t) is number of
departures in (0,t)
= Number of customers
in system is :
* N(®)=a(t)-5(t)
= Average system time is
* Area between a(t) and 3(t), denoted by y(t)
* T=y(D)/a(t)
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Number of customers

s e i 2
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Little’s Law

= Average arrival rate
o A=a(t)/t
= Average system time
* T=y(D)/o(t)
= Average number of customers
o N=y(t)/t
= Substitute y(t) and a(t)
o N&=AT,
= For t—Hw:
e N=AT (Little’s law)
= Average number of customers in queuing system is
average arrival rate times average system time.
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Related Results

Average number of customers in queue
© Ng=AW
Relation between waiting and service time
o T=Xx+W
Utilization p
o p=A/u=Ax
* System only stable if p<1 (why not p=1?)
* Let p, be probability that server idle: p=1—p,
So far:
* Not specific to particular type of queue
* No quantitative results
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Modeling of Queuing Systems

= Any gueuing system can be modeled as a
“stochastic process”

* Family of random variables X
» X(t) is indexed by time parameter teT
» X(t)eS, where S is “state space”

e If S is discrete, then stochastic is a “chain”
= Each state reflects state of queuing system
* Probabilities indicate what states are more likely
= Markov chains
* Probability for any state only depends on previous state
e History of Markov chain is summarized in current state
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Discrete Time Markov Chains

= DTMC is defined by
* X, is random variable indicating state in step n
* p; are transition probabilities between states
» Probability depends on current state only
= Example:
e State space S={0,1}

e Transition probabilities P ) Yo
» S X S matrix (

» Pep=0.75, py;=0.25 I

» P,,=0.5, p,;=0.5 72
* Probability to be in state O at step n

» P[X,=0] = 0.75-P[X,_,=0]+0.5-P[X,_,=1]

Ya
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Stationary Probability Vector

= What is the probability of being in a particular state?
* If Markov chain “runs long enough?”, initial state irrelevant
= Define n; as stationary probability of being in state i
= 7; is independent of time
* In matrix form: © = =P

= Stationary probability can be solved as set of linear
eqguations:
e 1, =0.75m, + 0.57,

Ya
e n, =0.25m, + 0.5m, 15
* Additional constraint: Xg;=1 ( )
Ya

= Solution: n,=2/3, n,=1/3
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Continuous Time Markov Chains

= Transition between state may happen at any time

= How should probabilities be represented?
* Probability for infinitesimally small time steps
* “Transition rate” is suitable description
= “Infinitesimal generator matrix” Q defines rates
* qy()=lim, [P, (t,t+At)/AL] (for ixj)
* Qi(D=—Z; Lig;

= Example:
n
-2 A 0
oclw 2w (o) (D (2)
A0 -2

= Time in a state is memoryless
* Exponential distribution is memoryless
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Exponential Distribution

= Exponential distribution has one parameter
e A if arrival rate ' ey —"
* u if service rate k i

= Mean: X=1/\

= CDF: Fu(r) = 1-eX=1-eM
= pdf: fy(r) = Aer

= Variance:var(X) = 1/A2

= Convenient properties: ,
* Number of arrivals in interval t is Poisson distributed
» Poisson parameter a=At and P[X=k]=ak-e-*/k!
* Rates are additive
» Combination of two exp. dist. with A, and A, has A=A, +AX,
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Steady-State Probability Vector

= By definition rate of leaving state is rate of staying
* Qi(D=-%; j.j
= Steady state probability vector «
¢ In steady state, Q=0 or %,_sq;m=0
» Change in probability vector is drij(t)/dt==%;_s0};m(t)
» If steady state, then lim,__[d=(t)/dt]=0

t—o0

* Additional constraint: Ir,=1 A "
= Solution to example: L4 o
e -Ang+um,-An,=0 o ‘ 2
_ Q= -2u
* Ang-2um,=0 10 -
* um,-An,=0 x

* Thus, n,=AMun, and n,=2n,. With constraint, we get
» mg=2/(3+A\/p)
» m= Mp/ (3+1/p)=r/(3p+1)
» m,=1/(3+A\/)
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Homework

= Read

¢ SPARK Handout: Sections 2.5, 3.1-3.2 from Leonard
Kleinrock, Queuing Systems - Volume I: Theory, Wiley-
Interscience, 1975.

= SPARK

* Assessment quiz
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