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Queuing Systems I
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Statistical Multiplexing
Circuit switching

Dedicated end-to-end connection
Resources are reserved along path
Guaranteed constant data rate
Achieved trough multiplexing 
(TDM, FDM)

Packet switching
Packets are unit of transmission
“Best effort” and no guarantees
Switches perform “store-and-
forward”
Statistical multiplexing 
incurs queuing delays

Can we quantify 
queuing delay?
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Simple Queuing Example
Queuing systems are everywhere

Line in bookstore (or Blue Wall)
Traffic light
Your homework assignments

Key features
“Server” has finite capacity (needs time to process)

» In network terminology, the server is the link
Demand for service (“job” arrival) is unpredictable

» The jobs are the packets

Questions
How long does a job need to wait before being serviced?
How many jobs are in the queue?
How high is the utilization of the server?
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Notation in Queuing Systems
Notation introduced by Kleinrock

Cn is nth customer entering system
» τn is arrival time for Cn

» tn is interarrival time (tn=τn–τn-1)
» xn is service time for Cn

» wn is waiting time for Cn

» sn is system time (waiting plus queuing) for CN (sn=wn+xn)
N(t) is number of customers in system at time t
U(t) is amount of unfinished work in system at time t
λ is average arrival rate

» E[tn]=1/λ
μ is average service rate

» E[xn]=1/μ
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Basic Queuing Behavior
α(t) is number of 
arrivals in (0,t)
δ(t) is number of 
departures in (0,t)
Number of customers
in system is 

N(t)=α(t)–δ(t)

Average system time is
Area between α(t) and δ(t), denoted by γ(t)
Tt=γ(t)/α(t)
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Little’s Law
Average arrival rate

λt=α(t)/t

Average system time
Tt=γ(t)/α(t)

Average number of customers
Nt=γ(t)/t

Substitute γ(t) and α(t)
Nt=λtTt

For t→∞:
N=λT (Little’s law)

Average number of customers in queuing system is 
average arrival rate times average system time.
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Related Results
Average number of customers in queue

Nq=λW

Relation between waiting and service time
T=x+W

Utilization ρ
ρ=λ/μ=λx
System only stable if ρ<1 (why not ρ=1?)
Let p0 be probability that server idle: ρ=1–p0

So far: 
Not specific to particular type of queue
No quantitative results
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Modeling of Queuing Systems
Any queuing system can be modeled as a 
“stochastic process”

Family of random variables X
» X(t) is indexed by time parameter t∈T
» X(t)∈S, where S is “state space”

If S is discrete, then stochastic is a “chain”

Each state reflects state of queuing system
Probabilities indicate what states are more likely

Markov chains
Probability for any state only depends on previous state
History of Markov chain is summarized in current state
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Discrete Time Markov Chains
DTMC is defined by

Xn is random variable indicating state in step n
pij are transition probabilities between states

» Probability depends on current state only

Example:
State space S={0,1}
Transition probabilities P

» S x S matrix
» p00=0.75, p01=0.25
» P10=0.5, p11=0.5

Probability to be in state 0 at step n
» P[Xn=0] = 0.75⋅P[Xn-1=0]+0.5⋅P[Xn-1=1]
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Stationary Probability Vector
What is the probability of being in a particular state?

If Markov chain “runs long enough”, initial state irrelevant

Define πi as stationary probability of being in state i
πi is independent of time

In matrix form: π = πP

Stationary probability can be solved as set of linear 
equations:

π0 = 0.75⋅π0 + 0.5⋅π1

π1 = 0.25⋅π0 + 0.5⋅π1

Additional constraint: Σπi=1

Solution: π0=2/3, π1=1/3
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Continuous Time Markov Chains
Transition between state may happen at any time
How should probabilities be represented?

Probability for infinitesimally small time steps
“Transition rate” is suitable description

“Infinitesimal generator matrix” Q defines rates
qij(t)=limΔt→0[pij(t,t+Δt)/Δt] (for i≠j)
qii(t)=–Σj,j≠iqij

Example:

Time in a state is memoryless
Exponential distribution is memoryless
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Exponential Distribution
Exponential distribution has one parameter

λ if arrival rate
μ if service rate

Mean: X=1/λ
CDF: FX(r) = 1-e-r/X=1-e-λr

pdf: fX(r) = λe-λr

Variance:var(X) = 1/λ2

Convenient properties:
Number of arrivals in interval t is Poisson distributed

» Poisson parameter α=λt and P[X=k]=αk⋅e-α/k!
Rates are additive

» Combination of two exp. dist. with λ1 and λ2 has λ=λ1+λ2
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Steady-State Probability Vector
By definition rate of leaving state is rate of staying

qii(t)=–Σj,j≠iqij

Steady state probability vector π
In steady state, πQ=0 or Σi∈Sqijπi=0

» Change in probability vector is dπj(t)/dt=Σi∈Sqijπi(t)
» If steady state, then limt→∞[dπ(t)/dt]=0

Additional constraint: Σπi=1
Solution to example:

-λπ0+μπ1-λπ2=0
λπ0-2μπ1=0
μπ1-λπ2=0
Thus, π1=λ/μπ2 and π0=2π2. With constraint, we get 

» π0=2/(3+λ/μ)
» π1= λ/μ/(3+λ/μ)=λ/(3μ+λ)
» π2=1/(3+λ/μ)
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Homework
Read

SPARK Handout: Sections 2.5, 3.1-3.2 from Leonard 
Kleinrock, Queuing Systems - Volume I: Theory, Wiley-
Interscience, 1975.

SPARK
Assessment quiz


